A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids
نویسندگان
چکیده
A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids is presented. The coupled thermo-mechanical boundary-value problem under consideration consists of the equilibrium problem for a deformable, inelastic and dissipative solid with the heat conduction problem appended in addition. The variational formulation allows for general dissipative solids, including finite elastic and plastic deformations, non-Newtonian viscosity, rate sensitivity, arbitrary flow and hardening rules, as well as heat conduction. We show that a joint potential function exists such that both the conservation of energy and the balance of linear momentum equations follow as Euler–Lagrange equations. The identification of the joint potential requires a careful distinction between equilibrium and external temperatures, which are equal at equilibrium. The variational framework predicts the fraction of dissipated energy that is converted to heat. A comparison of this prediction and experimental data suggests that a-titanium and Al2024-T conform to the variational framework. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates
In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...
متن کاملAn Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...
متن کاملVariational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions
In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...
متن کاملAn Investigation of Stress and Deformation Behavior of Functionally Graded Timoshenko Beams subjected to Thermo-Mechanical Load
A functionally graded material beam with generalized boundary conditions is contemplated in the present study in order to examine the deformation and stress behavior under thermal and thermo-mechanical load. Three discrete combinations of functionally graded materials have been deliberate in including a wide range of materials and material properties. The variation of material properties has be...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005